روش هم محلی موجک برای حل عددی مسائل مقدار مرزی بیضوی

پایان نامه
چکیده

براساس روش هم محلی موجک های هار و لژاندر، روش های عددی کارآمد و جدید برای حل عددی معادلات دیفرانسیل با مشتقات جزئی بیضوی با رفتار نوسانی و غیر نوسانی ارائه شده است. روش های حال حاضر در دو مرحله توسعه داده شده است. در مرحله اول، آنها برای موجک هار به منظور به دست آوردن دقت بالاتر توسعه داده شده است. در مرحله دوم موجک های لژاندر جایگزین موجک هار شده است. از عملکرد روش هم محلی موجک هار و روش هم محلی موجک های لژاندر تجزیه و تحلیل مقایسه ای انجام می گیرد. علاوه بر این، مطالعات مقایسه ای از عملکرد روش هم محلی موجک های لژاندر ، روش هم محلی اسپلاین درجه دوم، روش بدون شبکه و روش سینک گالرکین نیز انجام می شود. این تجزیه و تحلیل نشان می دهد که دقت بالاتری از تجزیه ی موجک لژاندر به دست می آید، که به صورت آنالیز چند منظوره است. این جواب ابتدا روی شبکه بزرگ نقاط یافت می شود و پس از آن با دقت بالاتر به کمک افزایش سطح موجک شبکه پالایش می شود. اجرای دقیق روش های عددی کلاسیک با شرایط مرزی نیومن شامل مشکلاتی است. در این تحقیق نشان داده می شود که روش های موجود را می توان به راحتی در شرایط مرزی نیومن اجرا کرده طوری که نتیجه ی به دست آمده دقیق باشد. به این ترتیب روش های موجود، یک مزیت روشنی نسبت به روش های عددی کلاسیک دارند. یکی از ویژگی های متمایز از روش های پیشنهادی کاربرد ساده یشان برای انواع شرایط مرزی است. مرتبه همگرایی عددی روش پیشنهادی محاسبه می شود. نتایج آزمایش های عددی، دقت بهتر روش ها را بر پایه ی موجک لژاندر برای حل انواع مسائل نشان می دهند.

منابع مشابه

روش های هم محلی موجک ها برای حل عددی مسائل مقدار مرزی بیضوی

دو روش جدید و موثر را برای حل عددی معادلات دیفرانسیل جزیی بیضوی (epde) ‎ با رفتار نوسانی و غیرنوسانی بر اساس روش هم محلی موجک های هار و لژاندر ارائه می کنیم. این روش ها در دو مرحله مطرح می شوند؛ در مرحله ی اول، موجک های هار را به کار می بریم و در مرحله ی دوم، به منظور بدست آوردن دقت بالاتر، موجک های لژاندر را جایگزین موجک های هار می کنیم‎.‎سپس یک آنالیز مقایسه ای از عملکرد روش هم محلی موجک های ...

15 صفحه اول

روش هم محلی موجک هار برای حل عددی مسائل جریان لایه مرزی سیال

در این پایان نامه یک روش عددی بر پایه موجک های هار برای حل عددی دستگاه زوج معادلات دیفرانسیل معمولی که با مسائل جریان سیال همرفت طبیعی لایه مرزی باpr ‎ بالا در ارتباط هستند، ارائه می دهیم. برای این مسائل تأثیر تغییرات ‎pr‎ روی انتقال حرارت در سیال بررسی شده است. به منظور محک زدن دقت روش، سیال ویسکوالاستیک را که دارای جواب دقیق است با این روش امتحان می کنیم‎.‎ همچنین مسائل مقدار مرز...

روش پرتابی- هم محلی برای حل عددی مسائل مقدار مرزی کسری

یک بررسی تحلیلی درباره وجود جواب و منحصربفردی جواب دقیق برای این رده از مسائل، بیان شده است.

15 صفحه اول

حل مسائل مقدار مرزی بیضوی و معادلات دیفرانسیل دوهمساز با استفاده از روش موجک

حل عددی معادلات پواسون و دو همساز مس‍‍أله مهمی در آنالیز عددی به شمار می رود. همچنین معادلات دیفرانسیل جزئی بیضوی کاربرد های زیادی در علوم و مهندسی دارند. در این پایان نامه دو روش عددی مبتنی بر موجک های هار و موجک های لژاندر برای به دست آوردن جواب معادله دیفرانسیل جزئی بیضوی ارائه می شود. ابتدا به ارائه تعاریف مقدماتی و مفاهیم اساسی می پردازیم. سپس یک روش محاسباتی برای حل معادلات پواسون و دو هم...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023